Model Predictive Static Programming: a Computationally Efficient Technique for Suboptimal Control Design
نویسندگان
چکیده
Combining the philosophies of nonlinear model predictive control and approximate dynamic programming, a new suboptimal control design technique is presented in this paper, named as model predictive static programming (MPSP), which is applicable for finite-horizon nonlinear problems with terminal constraints. This technique is computationally very efficient, and hence, can possibly be implemented online. The effectiveness of the proposed method is demonstrated by designing an ascent phase guidance scheme for a ballistic missile propelled by solid motors. A comparison study with a conventional gradient method shows that the MPSP solution is quite close to the optimal solution.
منابع مشابه
Computationally Efficient Suboptimal Mid Course Guidance Using Model Predictive Static Programming (MPSP)
For a homing interceptor, suitable initial condition must be achieved by mid course guidance scheme for its maximum effectiveness. To achieve desired end goal of any mid course guidance scheme, two point boundary value problem must be solved online with all realistic constrain. A Newly developed computationally efficient technique named as MPSP (Model Predictive Static Programming) is utilized ...
متن کاملComputationally Efficient Long Horizon Model Predictive Direct Current Control of DFIG Wind Turbines
Model predictive control (MPC) based methods are gaining more and more attention in power converters and electrical drives. Nevertheless, high computational burden of MPC is an obstacle for its application, especially when the prediction horizon increases extends. At the same time, increasing the prediction horizon leads to a superior response. In this paper, a long horizon MPC is proposed to c...
متن کاملA computationally efficient stable dual - mode type nonlinear predictive control algorithm
Abstract: This paper describes a computationally efficient (suboptimal) nonlinear predictive control algorithm. The algorithm uses a modified dual-mode approach which guarantees closed-loop stability. In order to reduce the computational burden, instead of online nonlinear optimisation used in the classical dual-mode control scheme, a nonlinear model of the plant is linearised on-line and a qua...
متن کاملEfficient Nonlinear Predictive Control Based on Structured Neural Models
This paper describes structured neural models and a computationally efficient (suboptimal) nonlinear Model Predictive Control (MPC) algorithm based on such models. The structured neural model has the ability to make future predictions of the process without being used recursively. Thanks to the nature of the model, the prediction error is not propagated. This is particularly important in the ca...
متن کاملCOMPUTATIONALLY EFFICIENT OPTIMUM DESIGN OF LARGE SCALE STEEL FRAMES
Computational cost of metaheuristic based optimum design algorithms grows excessively with structure size. This results in computational inefficiency of modern metaheuristic algorithms in tackling optimum design problems of large scale structural systems. This paper attempts to provide a computationally efficient optimization tool for optimum design of large scale steel frame structures to AISC...
متن کامل